Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 32186
1.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
2.  
i

Вы­ра­зи­те 737 см 8 мм в мет­рах с точ­но­стью до сотых.

1) 0,74 м
2) 7,37 м
3) 7,378 м
4) 7,38 м
5) 73,78 м
3.  
i

Среди точек B левая круг­лая скоб­ка 6;0 пра­вая круг­лая скоб­ка , O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , M левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус 5;6 пра­вая круг­лая скоб­ка , D левая круг­лая скоб­ка 0; минус 6 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:

1) B
2) O
3) M
4) C
5) D
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 7, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4 минус целая часть: 7, дроб­ная часть: чис­ли­тель: 17, зна­ме­на­тель: 24 пра­вая круг­лая скоб­ка умно­жить на 4,8 минус 0,7.

1) 0,5
2) 0,9
3) −0,9
4) −0,5
5) 2,4
5.  
i

Из точки А к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и АС и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти О. Точки В, С, M лежат на окруж­но­сти (см. рис.). Най­ди­те ве­ли­чи­ну угла AOB, если \angle CAO = 25 гра­ду­сов.

1) 25°
2) 45°
3) 60°
4) 65°
5) 75°
6.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен па­рал­ле­ло­грамм ABCD с вер­ши­на­ми в узлах сетки (см.рис.). Длина диа­го­на­ли AC па­рал­ле­ло­грам­ма равна:

1) 9
2) 9 ко­рень из 2
3) 2 ко­рень из 2
4) 7 ко­рень из 2
5) 7
7.  
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.

1) 54 см2
2) 36 см2
3) 34 см2
4) 27,5 см2
5) 27 см2
8.  
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.

1) Число 9 крат­но числу 61.
2) Число 508 крат­но числу 5.
3) Число 148 крат­но числу 1.
4) Число 55 крат­но числу 0.
5) Число 2 крат­но числу 10.
9.  
i

Пло­щадь круга равна 49 Пи . Диа­метр этого круга равен:

1) 7
2) 14
3) 49
4) 14 Пи
5) 7 Пи
10.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 2x минус 5,9 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 5,9 при −1 < x < 1 имеет вид:

1) 2x плюс 11,8
2) 2x
3)  минус 2x
4) 11,8 минус 2x
5)  минус 2x минус 11,8
11.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 230 умно­жить на дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 230 конец дроби .

1) 0,1
2)  целая часть: 43, дроб­ная часть: чис­ли­тель: 4, зна­ме­на­тель: 9
3) −0,1
4) −23
5) 23
12.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 8x плюс 16, зна­ме­на­тель: x в квад­ра­те минус 4x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
2)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 4 конец дроби
3)  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x плюс 4 конец дроби
4)  дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 4 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 4 конец дроби
13.  
i

Пря­мая a, па­рал­лель­ная плос­ко­сти α, на­хо­дит­ся от нее на рас­сто­я­нии 6. Через пря­мую a про­ве­де­на плос­кость β, пе­ре­се­ка­ю­щая плос­кость α по пря­мой b и об­ра­зу­ю­щая с ней угол 60°. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка ABCD, если A и B  — такие точки пря­мой a, что AB = 4, а C и D  — такие точки пря­мой b, что CD = 3.

1) 42
2) 42 ко­рень из 3
3)  дробь: чис­ли­тель: 21 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4) 10,5
5) 14 ко­рень из 3
14.  
i

Из пунк­тов A и B, рас­сто­я­ние между ко­то­ры­ми 190 км, од­но­вре­мен­но нав­стре­чу друг другу вы­еха­ли два ав­то­мо­би­ля с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми: из пунк­та A  — со ско­ро­стью a км/ч, из пунк­та B  — со ско­ро­стью b км/ч. Через не­ко­то­рое время ав­то­мо­би­ли встре­ти­лись. Со­ставь­те вы­ра­же­ние, опре­де­ля­ю­щее рас­сто­я­ние (в ки­ло­мет­рах) от пунк­та A до места встре­чи ав­то­мо­би­лей.

1)  дробь: чис­ли­тель: 190 левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка , зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: 190a, зна­ме­на­тель: a плюс b конец дроби
3)  дробь: чис­ли­тель: 190b, зна­ме­на­тель: a плюс b конец дроби
4)  дробь: чис­ли­тель: 190, зна­ме­на­тель: a плюс b конец дроби
5)  дробь: чис­ли­тель: 190 левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка , зна­ме­на­тель: b конец дроби
15.  
i

Ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та умно­жить на x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 7 в сте­пе­ни 5 умно­жить на 28 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та конец дроби равен:

1) 98 ко­рень из 2
2) 49 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та
3) 49 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 198 конец ар­гу­мен­та
4) 4 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та
5) 14 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та
16.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний двой­но­го не­ра­вен­ства  минус 448,9 мень­ше 2,9 плюс 9x мень­ше 23,6.

1) −52
2) −47
3) −49
4) −48
5) −53
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но на­ча­ла ко­ор­ди­нат и про­хо­дит через точку A (2; 10). Зна­че­ние вы­ра­же­ния k + b равно:

1) −8
2) 2
3) 5
4) 10
5) 12
18.  
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  15 и AO  =  10, то длина сто­ро­ны AC равна:

1) 17
2) 7 ко­рень из 6
3) 5 ко­рень из 3
4) 10 ко­рень из 3
5) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
19.  
i

Если в пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 4, а пло­щадь диа­го­наль­но­го се­че­ния равна 12, то ее объем равен ...

20.  
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 18, зна­ме­на­тель: x в квад­ра­те минус 7x плюс 16 конец дроби минус x в квад­ра­те плюс 7x=13.

21.  
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 36, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.

22.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 6 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка минус 7 умно­жить на 36 в сте­пе­ни x плюс 6 в сте­пе­ни x \leqslant0.

23.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 135=4 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

24.  
i

Най­ди­те 5x_1 умно­жить на x_2, где x_1, x_2  — абс­цис­сы точек пе­ре­се­че­ния па­ра­бо­лы и го­ри­зон­таль­ной пря­мой (см.рис.).

25.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби .

26.  
i

Най­ди­те сумму кор­ней урав­не­ния

| левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка | умно­жить на левая круг­лая скоб­ка |x| плюс |x минус 10| плюс |x минус 5| пра­вая круг­лая скоб­ка =11 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка \times
\times левая круг­лая скоб­ка 8 минус x пра­вая круг­лая скоб­ка .

27.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |8x минус 23| минус |6x минус 5|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.

28.  
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 15S.

29.  
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 11 : 1, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в шесть раз боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A два раза обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?

30.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 25 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 10 конец дроби .